3.175 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=100 \[ \frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d} \]

[Out]

-3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+5/3*(cos(1/2*d*x+
1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+
a*cos(d*x+c))+5/3*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2767, 2748, 2639, 2635, 2641} \[ \frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]

[Out]

(-3*EllipticE[(c + d*x)/2, 2])/(a*d) + (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (5*Sqrt[Cos[c + d*x]]*Sin[c + d
*x])/(3*a*d) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2767

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(a + b*Sin[e + f*x])), x] - Dist[d/(a*b), Int[(c +
d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ[2
*n] || EqQ[c, 0])

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac {\int \sqrt {\cos (c+d x)} \left (\frac {3 a}{2}-\frac {5}{2} a \cos (c+d x)\right ) \, dx}{a^2}\\ &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac {3 \int \sqrt {\cos (c+d x)} \, dx}{2 a}+\frac {5 \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{2 a}\\ &=-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}\\ &=-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}+\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.28, size = 289, normalized size = 2.89 \[ \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 \csc (c) \sqrt {\cos (c+d x)} \left (\sin (2 c) \sin (d x)+2 \sin ^2(c) \cos (d x)+6 \sin \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )+6 \cos (c)+3\right )}{d}-\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (9 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+5 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )+9 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{3 a (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
+ d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((
2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + (2*Sqrt[Cos[c + d*x]]*Csc[c]*(3 + 6*Cos[c] + 2*Cos
[d*x]*Sin[c]^2 + 6*Sec[(c + d*x)/2]*Sin[c/2]*Sin[(d*x)/2] + Sin[2*c]*Sin[d*x]))/d))/(3*a*(1 + Cos[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 1.14, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.63, size = 215, normalized size = 2.15 \[ -\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (9 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+18 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(9*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2)))-8*sin(1/2*d*x+1/2*c)^6+18*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x)),x)

[Out]

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________